Dirac Operator on a 7-Manifold with Deformed G2 Structure

نویسندگان

  • Nülifer Özdemir
  • Şirin Aktay
  • ŞİRİN AKTAY
چکیده

In this work, we consider the deforming of a G2 structure by a vector field on a 7−manifold. To obtain the metric corresponding to deformed G2 structure, a new map is defined. By using this new map, the covariant derivatives on associated spinor bundles are compared. Then, the relation between Dirac operators on spinor bundles are investigated under some restrictions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calibrated Manifolds and Gauge Theory

By a theorem of Mclean, the deformation space of an associative submanifold Y of an integrable G2-manifold (M,φ) can be identified with the kernel of a Dirac operator D/ : Ω(ν) → Ω(ν) on the normal bundle ν of Y . Here, we generalize this to the non-integrable case, and also show that the deformation space becomes smooth after perturbing it by natural parameters, which corresponds to moving Y t...

متن کامل

M ay 2 00 6 CALIBRATED MANIFOLDS AND GAUGE THEORY

By a theorem of Mclean, the deformation space of an associative sub-manifolds of an integrable G2 manifold (M, ϕ) at Y ⊂ M can be identified with the kernel of the Dirac operator D / : Ω 0 (ν) → Ω 0 (ν) on the normal bundle ν of Y. We generalize this to non-integrable case, and also show that the deformation space becomes smooth after perturbing it by natural parameters, which corresponds to mo...

متن کامل

A ug 2 00 7 CALIBRATED MANIFOLDS AND GAUGE THEORY

By a theorem of Mclean, the deformation space of an associative submanifold Y of an integrable G2-manifold (M, ϕ) can be identified with the kernel of a Dirac operator D / : Ω 0 (ν) → Ω 0 (ν) on the normal bundle ν of Y. Here, we generalize this to the non-integrable case, and also show that the deformation space becomes smooth after perturbing it by natural parameters, which corresponds to mov...

متن کامل

Associative Submanifolds of a G2 Manifold

We study deformations of associative submanifolds Y 3 ⊂ M of a G2 manifold M . We show that the deformation space can be perturbed to be smooth, and it can be made compact and zero dimensional by constraining it with an additional equation. This allows us to associate local invariants to associative submanifolds of M . The local equations at each associative Y are restrictions of a global equat...

متن کامل

Spectral analysis of the massless Dirac operator on a 3-manifold

The talk will give an overview of our further development of the paper [7] by Robert Downes, Michael Levitin and Dmitri Vassiliev and it will also give an insight how spectrum of massless Dirac operator on a 3-manifold interplays with geometric contents of the manifold. In contrast to the Riemann flat manifold studied in [7], 3-torus, we study the massless Dirac operator on a 3-sphere equipped ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013